On Generalization Based on Bi et al. Iterative Methods with Eighth-Order Convergence for Solving Nonlinear Equations
نویسندگان
چکیده
The primary goal of this work is to provide a general optimal three-step class of iterative methods based on the schemes designed by Bi et al. (2009). Accordingly, it requires four functional evaluations per iteration with eighth-order convergence. Consequently, it satisfies Kung and Traub's conjecture relevant to construction optimal methods without memory. Moreover, some concrete methods of this class are shown and implemented numerically, showing their applicability and efficiency.
منابع مشابه
Two new three and four parametric with memory methods for solving nonlinear equations
In this study, based on the optimal free derivative without memory methods proposed by Cordero et al. [A. Cordero, J.L. Hueso, E. Martinez, J.R. Torregrosa, Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation, Mathematical and Computer Modeling. 57 (2013) 1950-1956], we develop two new iterative with memory methods for solving a nonline...
متن کاملA SIXTH ORDER METHOD FOR SOLVING NONLINEAR EQUATIONS
In this paper, we present a new iterative method with order of convergence eighth for solving nonlinear equations. Periteration this method requires three evaluations of the function and one evaluation of its first derivative. A general error analysis providing the eighth order of convergence is given. Several numerical examples are given to illustrate the efficiency and performance of the new ...
متن کاملAN ITERATIVE METHOD WITH SIX-ORDER CONVERGENCE FOR SOLVING NONLINEAR EQUATIONS
Modification of Newtons method with higher-order convergence is presented. The modification of Newtons method is based on Frontinis three-order method. The new method requires two-step per iteration. Analysis of convergence demonstrates that the order of convergence is 6. Some numerical examples illustrate that the algorithm is more efficient and performs better than classical Newtons method and ...
متن کاملNew iterative methods with seventh-order convergence for solving nonlinear equations
In this paper, seventh-order iterative methods for the solution ofnonlinear equations are presented. The new iterative methods are developed byusing weight function method and using an approximation for the last derivative,which reduces the required number of functional evaluations per step. Severalexamples are given to illustrate the eciency and the performance of the newiterative methods.
متن کاملA NOTE ON "A SIXTH ORDER METHOD FOR SOLVING NONLINEAR EQUATIONS"
In this study, we modify an iterative non-optimal without memory method, in such a way that is becomes optimal. Therefore, we obtain convergence order eight with the some functional evaluations. To justify our proposed method, some numerical examples are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014